TEMPERATURE CONTROLLER

OPERATION MANUAL

Before using please check whether range, input and output match your requirement.

Thank you for using our microprocessor temperature controller, we have obtained CE certification (LDV: D/N EN61010-1; EMC EN 55 022 1994/A1: 1995/A2: 1997, EN 61 000-3-2: 1995/ -3-3: 1995, EN 61 000-4-2: 1995/ -4-3: 1996/ -4-5: 1995/ -4-6: 1996/ -4-8: 1993/ -4-11: 1996/ EN 50 204: 1995) for all our products since January, 2002. We have also computerized our QC process and testing to provide high quality standard, low price and high functionality in our products.

1. Front panel instruction

1.1 DISPLAY

- PV : Process value , 4 digit display (red color)
- SV : Setting value , 4 digit display (green color)
- 1.2 LED

OUT1	: Output 1,	green color

- OUT2 : Output 2, green color
- AT : Auto Tuning , yellow color
- PRO : Program , yellow color --- Only available for PFY models.
- AL1 : Alarm 1 , red color
- AL2 : Alarm 2, red color
- AL3 : Alarm 3 , red color
- MAN : Manual , yellow color

*Note: When error occurs, the MAN will light up, and will reset output percentage to zero.

1.3	KEY	
	SET	: MODE & SET key
	\triangleleft	: SHIFT key
	\bigtriangledown	: DOWN key (Setting value –1, -10, -100, -1000)
	\bigtriangleup	: UP key (Setting value +1, +10, +100, +1000)
	A/M	: Auto/Manual key.
	Automatic	: The output percentage is determined by internal calculation.
	Manually	: The output percentage is determined by manually set
		OUTL at User Level.

2 Auto tuning

- 2.2 Once AT is set YES, auto tuning is to be performed.
- After auto tuning is finished, a new set of PID parameter is generated internally to replace the existing PID parameter.
 * Auto tuning allows the controller to automatically adjust the PID parameter, and is suitable for use when temperature control is not accurate enough.
- ATVL=auto tuning offset, and it will be deduced from SV (it can prevent over shoot during auto tuning) SV-ATVL=Auto-tuning value, ATVL=auto tuning offset Ex.SV=200, ATVL=5, Auto tuning point is at 195 During auto tuning the PV value will oscillate around 195. Hence PV will not go over 200.
 * In programmable model, ATVL means Auto-tuning point
- 2.5 Auto tuning failure
 - Possible Cause 1 : ATVL is too big. (If not sure , set ATVL=0)

Possible Cause 2 : System time is too long.

(Set PID parameter individually)

DISPLAY	DESCRIPTION
IN1E	Open circuit of main control sensor.
* ADCF	A/D converter failed.
* CJCE	Cold junction compensation failed.
IN2E	Open circuit of sub control sensor.
UUU1	PV exceeds USPL.
NNN1	PV under LSPL.
UUU2	Input signal of sub control exceeds the upper limit.
NNN2	Input signal of sub control under the lower limit.
* RAMF	RAM failed.
INTF	Interface failed.
AUTF	Auto tuning failed.

3. Error information

NOTE : If the "*" marked error comes up , the Controller needs repair. Please send it to the nearest sales office or retail dealer.

4. Operating flow

- 4.1.1 Press the SHIFT KEY (\checkmark) to change the parameters. If the SHIFT KEY is pressed, the first digit begins blinking. Press the UP KEY(\checkmark) or DOWN KEY(\checkmark to increase or decrease the value of the digit , then press the SHIFT KEY(\checkmark again to go to the next digit. As all the digit are written , press SET KEY to enter the value.
- 4.1.2 **SET KEY** also has the function of changing MODEs , if the **SET KEY** is pressed , the display shows the next MODE.
- 4.1.3 Press **SET KEY** for 5 sec. the display goes to LEVEL 2 , and do the same to return LEVEL 1.
- 4.1.4 If any key were not pressed for 1 minute , the display would go to LEVEL 1.
- 4.1.5 Press A/M KEY twice will go to LEVEL 1, no matter where it is.
- 4.1.6 If **OUTL** set "0", it means the controller has no output,

4.2 LEVEL 2 (PID Level)

press SET key for 5 seconds to enter Level 2

	P1 3.0	Main Control Proportional Band	Range : 0.0-200.0% ON/OFF at P=0
I1 240	<u>I1</u> 240	Main Control Integral Time	Range : 0~3600 Sec Integral OFF at I=0
	↓ Set □ 01 60 Set	Main Control Derivative Time	Range:0~900 Sec Derivative OFF at D=0
$ \begin{array}{c} \downarrow \text{ Se}\\ \hline \text{ db 1}\\ \hline 0 \end{array} $	$\begin{array}{c} \bullet & \text{Set} \\ \hline & db \ 1 \\ \hline & 0 \\ \hline & 0 \\ \hline & \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	Main Control Dead-band Time	Don t care
		Main Control Auto tuning off-set	Range : 0~USPL
Displayed,	CYT1 10	Main Control Proportional Cycle	Output (SSR=1 , 4 ~ 20mA=0 , Relay=over 10) Range : 0~150 Sec
only if P1=0.0	HYS1 1	Main Control Hysteresis	Range : 0~1000 (For ON/OFF control only) OFF: PV > (SV+HYS1) ON: PV <= (SV HYS1)
1	P2 3.0	Sub Control Proportional Band	Sames as P1
¥ S <u>I2</u> 240	<u>I2</u> 240	Sub Control Integral Time	Sames as I1
only i	D2 240	Sub Control Derivative Time	Sames as D1
Displayed, f "Dual" C	CYT2 10	Sub Control Proportional Cycle	Sames as CYT1
Displayed,	HYS2 1 Set	Sub Control Hysteresis	Sames as HYS1
only if P2=0.0	GAP1 0 Set	Main Control Gap (Output 1)	OUT1(HEAT) Setting Point=SV - GAP1
<u> </u>	GAP2 0 V Set	Sub Control Gap (Output 2)	OUT2(COOL) Setting Point=SV + GAP2
	LCK 0000	Function Lock	
v Set Return P1		LCK=0000, To enter any LCK=1111, To enter any LCK=0100, To enter Leve	Level (not include SET Level) and change their parameters Level (include SET Level) and change their parameters l 1 & 2 and to change their parameters.
		LCK=0110, To enter Leve LCK=0001, To enter Leve	el 1 & 2 and to change Level 1parameters only . el 1 only and to change SV only.

LCK=0001, 10 enter Lever 1 only and to change SV only LCK=0101, it can t change any parameter except LCK.

4.3 LEVEL 3 (INPUT Level) When LCK=0000, press SET key and SHIFT KEY for 5 seconds to enter

LEVEL 3

INP1	Main Control	select the input range, refer to input
KZ ▼ Set	input selection	selection (P.12 \sim 13)
ANL1 0	Main Control Analog Zero set	It is used when INP1=AN1~AN5 Range :LSPL~USPL
ANH1 5000	Main Control Analog Span set	Same as ANL1
	Decimal point	To set the position of decimal point (Only applicable when INP1=AN1~AN5)
▼ Set <u>LSPL</u> 0.0	Lower set-point limit	To set the lowest point within INP1
▼ Set <u>USPL</u> 400.0	Upper set-point limit	To set the highest point within INP1
▼ Set ANL2 0	Sub Control Analog Zero set	It is used as input code are AN1 to AN5 Range:LSPL~USPL
▼ Set ANH2 5000	Sub Control Analog Span set	Sames as ANL2
ALD1 01	Alarm mode of AL1	Range:00~19 (see P.14~15)
✓ Set ALT1 10 ✓ Set	Time set of Alarm 1	Range:0~99.59 min. 0=flicker alarm , 99.59=continued ,and other=on delay time Note:In program model,ALT=Alarm on time
ALD2 01	Alarm mode of AL2	Range:00~19 (see P.14~15)
♦ Set ALT2 0 Set	Time set of Alarm 2	Sames as ALT1
ALD3 01	Alarm mode of AL3	Range:00~19 (see P.14~15)
♦ Set ALT3 0	Alarm 3 time set	Sames as ALT1
♦ Set HYSA 0	Hysteresis of alarm	Range : 0~1000
▼ Set <u>CLO1</u> <u>230</u> ▼ Set	Main Control calibration	Calibrate the low value of output Range : LSPL~USPL(current output only)

CHO1	Main Control	To calibrate the high value of output
<u>3600</u>	Calibration high	Range:0~9999(current output only)
CLO2 230	Sub control Calibration low	Same as CLO1
CHO2 3600	Sub control Calibration high	Same as CHO1
CLO3 0	Transmitter control Calibration low	Same as CLO1
CHO3 5000	Transmitter control Calibration high	Same as CHO1
RUCY 5	Timer of motor	Full run time of proportional motor (without potentiometer) Range : 5~200 sec.
V Set WAIT 0	Use in program for waiting continued operation	0=No Wait Other=Wait volume
▼ Set <u>SETA</u> 0000	-	Refer to "SETA" description. (see P.22)
¥ Set IDNO 1	ID number (don t care)	Communication ID number
BAUD	Baud rate	UART baud rate selection
2400	(don t care)	Range : 110~9600 BIT/sec
¥ Set SVOS 0 ¥ Set	Compensate SV	Range : -1000~1000
PVOS 0 Set	Compensate PV	Range : LSPL~USPL
	Unit of PV & SV	Range : C , F , A(analog)
	Soft filter (don t care)	Adjust the response time of PV (the bigger, the faster) Range: 0.05~1.00
CASC	don t care	
V Set OUD HEAT Set	Action mode	Range : heat , cool
OPAD PID Set	Control action	Range : PID , Fuzzy
HZ 60	Frequency	Range : 50 , 60HZ
▼ Set Return INP1		

4.4 LEVEL 4 (SET Level) <u>When LCK=1111</u>, press SET key and SHIFT KEY for 5 seconds to enter Level 4. There are SET 0.1 to SET 9.4 for use.

4.4.1 Display :

4.4.2 Function of SETs

SET	Function	SET	Function
1.1	OUTL	5.1	CLO2, CHO2
1.2	AT	5.2	CLO3, CHO3
1.3	AL1	5.3	RUCY , WAIT , SETA
1.4	AL2	5.4	IDNO , BAUD
2.1	AL3	6.1	SVOS
2.2	ANL1 , ANH1 , DP	6.2	PVOS
2.3	LSPL, USPL	6.3	UNIT
2.4	ANL2 , ANH2	6.4	SOFT
3.1	ALD1	7.1	CASC
3.2	ALT1	7.2	OUD
3.3	ALD2	7.3	OPAD
3.4	ALT2	7.4	HZ
4.1	ALD3		
4.2	ALT3		
4.3	HYSA		
4.4	CLO1, CHO1		

SET	Function	Remarks
8.1	0=No repeat	
	1=Program repeat	
8.2	0=No power failure	Programmable Model Only
	1=With power failure	
8.3	0=Start from 0	
	1=Start from PV	
9.3	TRS SV	
9.4	TRS PV	Auxiliary Output Use
0.3	0=No Remote SV	
	1=Remote SV	

- When SET8.3=1 (The programmable controller will initiate the SV value to be the current PV value.) The controller will be more energy efficient, and also decreases the time needed to achieve the desired SV value. The remaining time left to reach the SV value will be shown in the parameter "TIMR". Hence the time of countdown is related to the PV value, not related to segment setting.
- Please don't operate SET 8.4, otherwise the controller's process will be in confusion.

If SET8.4 is set to "1", the controller will enter into "Single Display" mode, the PV LED will not display any values. The SV LED will display both the parameter value and the setting value alternately as shown in the diagram below.

To rectify the problem please press the SHIFT KEY (\checkmark) and change the setting value to "XXX0".

4.4.3 FUNCTION OF LCK

LCK=0000 , It can enter Level 3 (press SET + for 5 sec.) LCK=1111 , It can enter Level 4 (press SET + for 5 sec.) LCK=0100 , It can enter Level 1 & 2 and change their parameters. LCK=0110 , It can enter Level 1 & 2 but change Level 1 parameters only. LCK=0001 , It can enter Level 1 only and change SV only. LCK=0101 , It can't change any parameters except LCK.

4.5 PROGRAM LEVEL (to be ordered)

et program pattern Range : 0~2
rogram segment display Resprent : ("pattern"_"segment")
Program countdown display Range : 0~99 hour 59 min
et volume for Seg.1 Range:LSPL~USPL
bet time for Seg.1 Range :0~99 hour 59 min
et output for Seg.1 ange:0~100% EOUT=0,No program function
Set volume for Seg.2
Set time for Seg.2
set output for Seg.2
Set volume for Seg.3
Set time for Seg.3
set output for Seg.3
Set volume for Seg.4
Set time for Seg.4

Set output for Seg.4

SV-5	Set volume for Seg.5
▼ Set TM-5	Set time for Seg.5
▼ Set OUT-5	Set output for Seg.5
▼ Set SV-6	Set volume for Seg.6
▼ Set TM-6	Set time for Seg 6
V Set	Set output for Sog 6
V Set	
▼ Set	Set volume for Seg.7
Set	Set time for Seg.7
	Set output for Seg.7
SV-8	Set volume for Seg.8
TM-8	Set time for Seg.8
OUT-8	Set output for Seg.8
Return LEVEL 1	

- **4.5.1** This program has 2 patterns , each pattern contains 8 segments.
- 4.5.2 Terminologies
 - **Pattern** : A program consists of some steps.

Step : A Ramp status + a Soak status.

Ramp status : The status with changing SV.

Soak status : The status with fixed SV.

4.5.3 Operating

1. "KEY" function (no changing parameter)

 \bigtriangleup (RUN) : To start program procedure , **PRO** in panel flicker.

(HOLD) : To suspend program procedure, **PRO** in panel will stop flicker but light.

 \rightarrow + SET(JUMP) : To jump segment.

+ SET (RESET) : To reset program procedure , PRO in panel will be "off".

2. Alarm Function :

If ALD1 to be set "07" (* refer to the selection , p.14~15) ,

AL1 to be set "2"(AL1=2, it means alarm in segment 2 end),

ALT1 to be set "00.10" (alarm time 10 sec.).

In this case, when program proceeds to segment 2 end, ALM1 relay will be on 10 sec.

3. END function :

This controller doesn't have END order, so if program procedure are less than 8 segments, please set segment's out = 0, then this program will end in last set segment. Otherwise, it will proceed 8 or 16 segments.

4. Linking Function :

PTN=1 proceed pattern 1 , contains 8 segments.

PTN=2 proceed pattern 2 , contains 8 segments.

PTN=0 linking proceed pattern 1 and 2 totally 16 segments.

(set PTN1 and PTN2 at first, then set PTN=0)

5. Other function(* refer to LEVEL 4)

SET 8.1=1 program repeat.

SET 8.2=0 No power fail function.

SET 8.2=1 with power fail function

(if power suspend, the controller will keep memory)

SET 8.3=0 program start from 0.

SET 8.3=1 program start from PV.

5. INPUT

5.1 Input selection (INP1)

TYPE	CODE	RANGE	
	K1	0.0 ~ 200.0 / 0.0 ~ 392.0	
	K2	0.0 ~ 400.0 / 0.0 ~752.0	
V	K3	0 ~ 600 / 0 ~1112	
N	K4	0 ~ 800 / 0 ~1472	
	K5	0~1000 / 0~1832	
	K6	0~1200 / 0~2192	
	J1	0.0 ~ 200.0 / 0.0 ~ 392.0	
	J2	0.0 ~ 400.0 / 0.0 ~752.0	
T	J3	0 ~ 600 / 0 ~1112	
5	J4	0~800 / 0~1472	
	J5	0~1000 / 0~1832	
	J6	0~1200 / 0~2192	
D	R1	0~1600 / 0~2912	
	R2	0~1769 / 0~3216	
S	S1	0~1600 / 0~2912	
3	S2	0~1769 / 0~3216	
В	B1	0~1820 / 0~3308	
F	E1	0~800 / 0~1472	
	E2	0~1000 / 0~1832	
N	N1	0~1200 / 0~2192	
	N2	0~1300 / 0~2372	
Т	T1	0.0 ~ 400.0 / 0.0 ~752.0	
L	T2	0.0~ 200.0 / 0.0 ~392.0	
	T3	0.0 ~ 350.0 / 0.0 ~662.0	
XX7	W1	0~2000 / 0~3632	
VV	W1	0~2320 / 0~2372	
DI	PL 1	0~1300 / 0~2372	
	PL 2	0~1390 / 0~2534	
TI	U1	-199.9 ~ 600.0 / -199.9 ~999.9	
U	U2	-199.9 ~ 200.0 / -199.9 ~392.0	
	U3	0.0 ~ 400.0 / 0.0 ~752.0	

ТҮРЕ	CODE	RANGE	
т	L1	0~400 / 0~752	
L	L2	0~800 / 0~1472	
пс	JP 1	-199.9 ~ 600.0 / -199.9 ~999.9	
112	JP 2	-199.9 ~ 400.0 / -199.9 ~752.0	
DT100	JP 3	-199.9 ~ 200.0 / -199.9 ~392.0	
r 1 100	JP 4	0~200 / 0~392	
	JP 5	0~400 / 0~752	
	JP 6	0 ~ 600 / 0 ~1112	
DIN	DP 1	-199.9 ~ 600.0 / -199.9 ~999.9	
	DP 2	-199.9 ~ 400.0 / -199.9 ~752.0	
DT100	DP 3	-199.9 ~ 200.0 / -199.9 ~392.0	
r 1100	DP 4	0~200 / 0~392	
	DP 5	0~400 / 0~752	
	DP 6	0 ~ 600 / 0 ~1112	
JIS	JP.1	-199.9 ~ 600.0 / -199.9 ~999.9	
	JP.2	-199.9 ~ 400.0 / -199.9 ~752.0	
DT50	JP.3	-199.9 ~ 200.0 / -199.9 ~392.0	
1 1 30	JP.4	0~200 / 0~392	
	JP.5	0~400 / 0~752	
	JP.6	0 ~ 600 / 0 ~1112	
AN1	AN1	-10 ~ 10mV / -1999~9999	
AN2	AN2	0~10mV/-1999~9999	
AN3	AN3	0~20mV/-1999~9999	
AN4	AN4	0~50mV/-1999~9999	
AN5	AN5	10 ~ 50mV /-1999~9999	

* The initial set in factory is "K2" without any certain requirement

6. ALARM

CODE	DESCRIPTION	INHIBIT	
00 / 10	None		
01	Deviation high limit alarm	YES	
11	Deviation high limit alarm	NO	
02	Deviation low limit alarm	YES	
12	Deviation low limit alarm	NO	
03	Deviation high / low limit alarm	YES	
13	Deviation high / low limit alarm	NO	
04 / 14	Deviation high / low limit range alarm	NO	
05	Absolute value high limit alarm	YES	
15	Absolute value high limit alarm	NO	
06	Absolute value low limit alarm	YES	
16	Absolute value low limit alarm	NO	
07	Segment end alarm	-	
	(use for program model only)		
17	Program run alarm	-	
	(use for program model only)		
08	System error alarm-on	-	
18	System error alarm-off	-	
09		-	
19	On delay timer alarm	-	

Note : the word "INHIBIT" means that alarm does not work at the first

time.

6.2 Alarm action description

7. Modification of input "TC" \rightleftharpoons "RTD"(on PC board)

If the controller needs modification from **TC** or **mV** to <u>**RTD**</u> type , please <u>make PAD short</u> on PC board back as following diagram and changing input selection. On the contrary, modify from **RTD** to <u>**TC** or **mV**, <u>make PAD</u> <u>open</u>.</u>

8.Modification of output "Relay" + "SSR" + "4~20mA" It just needs to <u>change a module</u> at the same position , and modify parameter CYT1 in LEVEL 2 .

9. Modification of output

"HEAT/ALARM" ---->"HEAT/COOL" (on PC board)

HEAT / ALARM

HEAT / COOL

10. Modification of INPUT : 0~1V , 0~5V , 0~10V , mA

10.1 Hardware part :

11. Special Function Description :

11.1 LEVEL 4 (Set Level)

11.1.1 Second input mode (FY MODEL ONLY)

- INP2=0 None
- INP2=1 10~50mV / 4~20mA / 1~5V / 2~10V
- INP2=2 0~50mV / 0~20mA / 0~5V / 0~10V

*Second Input is for Remove SV function, but the PFY model's SV can only be controlled by the program, so INP2=0 is not applicable.

11.1.2 Output mode

- OUTY=0 Single Output
- OUTY=1 Double Output
- OUTY=2 None
- OUTY=3 Motor Valve
- OUTY=4 1 SCR (Single Phase Control)
- OUTY=5 3 SCR (Three Phase Control)

RAMP & SOAK (Only Applicable for FY MODEL) 11.2

11.2.1 **RAMP**:

- Please set "SET2.1=1"(Display AL3), "SET4.1=1" (Display ALD3) I.
- ALD3=9 at INPUT Level II.

RAMP menu will be displayed (replace AL3) III.

11.2.2 SOAK :

- Ι. ALD1 / ALD2=19
- Ш. AL1 / AL2 will be display


```
Range : 00.00 ~ 99.59(Hour.Minute)
```

11.2.3 Example :

SV=100

```
, RAMP=10.00 ( /min) , AL1=00.10 min , PV=25
```


- 11.3 REMOTE SV (Only applicable for FY MODEL)
- 11.3.1 Hardware must be mounted
- 11.3.2 Set INP2 to1 or 2 (calibration use ANL2, ANH2)
- 11.3.3 SET 0.3=0 means local SV
- 11.3.4 SET 0.3=1 means remote SV from Input 2 channel
- 11.4 Alarm Time ALT1/ALT2/ALT3 description (FY MODEL ONLY)
- 1. ALT1=0 means flicker if AL1 is on
- 2. ALT1=99.59 means alarm if AL1 is on
- ALT1=00.01 ~ 99.58 means AL1 is on delay timer (* use for large EMI affect controller)
- 11.5 Renew function "HYSM" <u>►<u>SETA</u>"</u>

11.7	Function SET9				
11.7.1	SET9.1=0	None			
	SET9.1=1	PV / SV switching			
		(use for single display so please don' t set this Bit.)			
11.7.2	SET9.2=0	None			
	SET9.2=1	PFY models : Timer change from H.M to M.S			
11.7.3	SET9.3=0	None			
	SET9.3=1	Transmission SV			
11.7.4	SET9.4=0	None			
	SET9.4=1	Transmission PV			
11.8	SET0				
11.8.1	SET0.1=0	None			
	SET0.1=1	TTL communication SV output			
11.8.2	SET0.2=0	None			
	SET0.2=1	Rate for AL3 (ALD3=0) (see Application 1, P.25)			
11.8.3	SET0.3=0	None			
	SET0.3=1	Remote SV			
11.8.4	SET0.4=0	Motor Valve close = "b" out			
	SET0.4=1	Motor Valve close = "a" out (Don't care)			
11.9	WAIT at II	NPUT Level			
	WAIT=0	means "no wait"			
	WAIT 0	means "wait"			

12.Panel cut & Outline Dimension :

12.1 Panel Cut Dimension(Units : mm)

	А	В	С	D
FY400	44.5+0.5	44.5+0.5	65	70
FY600	90.5+0.5	44.5+0.5	111	70
FY700	68.5+0.5	68.5+0.5	89	94
FY800	44.5+0.5	90.5+0.5	65	116
FY900	90.5+0.5	90.5+0.5	111	116

12.2 Outline Dimension (Units : mm)

	Е	F	G	Н
FY400	50	50	17	80
FY600	96	50	17	80
FY700	74	74	17	80
FY800	50	96	17	80
FY900	96	96	17	80

Н

Application

App1. TTL communication : SV output & RATE function

> Open RATE function (use for slave)

11.10 Open Rate : SET0.2=1

- 11.11 Open AL3 : SET2.1=1
- 11.12 Open ALD3 : SET4.1=1
- 11.13 ALD3=0 at INPUT Level
- 11.14 Slave SV = (RATE÷9999)×master SV
- > Example :

(All reach to the max value at the same time)

App2. Single Phase Control (for SCR module)

- > Available Models : FY900 / PFY900 , FY700 / PFY700
- > Data Change : OUTY=4

CLO1=0 , CHO1=4500 if use for resistance load CLO1=0 , CHO1=4000 if use for inductor load

App3. Single Phase Control (for TRIAC module)

- > Available Models : FY900 / PFY900 , FY700 / PFY700
- > Data Change : OUTY=4

CLO1=0 , CHO1=4500 if use for resistance load CLO1=0 , CHO1=4000 if use for inductor load

** Controller source phase must be same as load source phase

App4. Three Phase Control

- > Available Models : FY900 / PFY900
- > Data Change : OUTY=5

CLO1=0 , CHO1=4500 only if use for resistance load

3 LOAD

App5. Single Phase Zero Control

 Available Models : FY900 / PFY900 , FY700 / PFY700 FY400 / PFY400
 Data Change : OUTY=0

CYT1=1

App6. Three Phase Zero Control

- > Available Models : FY900 / PFY900
- > Data Change : OUTY=0

CYT1=1

App7. Motor Valve Control

Available Models : FY900 / PFY900 , FY700 / PFY700 FY800 / PFY800 , FY600 / PFY600 FY400 / PFY400

> Data Change : OUTY=3

CYT1=1 ~ 100sec. (Manufacturing default setting "5" sec.)

RUCY=5 ~ 200 sec.

- 1. CYT1 is the cycle time of Open / Close
- 2. RUCY is the running time of motor valve 0 ~ 100%

MOTOR VALVE

App8. RS485 Communication

RS485 Connection Diagram

NOTE:

1. The length of the cable line between Converter and Controller can't exceed 1.2 KM.

2.One Com Port can be connected up to a maximum of 30 Controllers.

- 3.Ensure that the Controller's IDNO and BAUD have the same value as the software's setting.
- 4.For the software communication format please refer to the "Protocol" file in the CD.

RS232 Connection Diagram

NOTE:

- 1. The length of the cable line can't exceed 15 meter.
- 2.One Com Port can only be connected to one controller. If more than one controller is connected to one Com Port, communication will be failed.
- 3.Ensure that the controller's IDNO and BAUD have the same value as the software's setting.
- 4.For the software communication format please refer to the "Protocol" file in the CD.